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SUMMARY

We propose a technique for constructing a fault-tol-

erant parallel software for general commercial massively

parallel computers which are not provided with special

fault-tolerant functions. This technique is a hybrid of the

primary/backup approach and state machine approach, and

can implement parallel programs in fault tolerance by auto-

matically converting user programs. In general, when a

parallel system is to be used as a fault-tolerant computer,

since parallel entities are used as redundant elements for

obtaining fault tolerance, the maximum performance will

decrease concurrently with the improvement of reliability.

Moreover, it is necessary to consider the performance drop

for processing which is supplementary to the original pro-

gram in fault-tolerant implementation by software. There-

fore, a gain by fault-tolerant implementation cannot be

shown if it is merely demonstrated that an improvement of

the reliability is obtained. In this paper, we define an evalu-

ation index which takes into account reliability improve-

ment and performance drop; based on this index, we study

the execution environment which can tolerate practical use

for fault-tolerant parallel software. © 2000 Scripta Technica

Syst Comp Jpn, 31(7): 56�65, 2000
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1. Introduction

The MTTF of a parallel computer is 1/N, in general,

for a number N of constituent processing elements (PEs).

For example, a parallel computer consisting of 1000 PEs

having an MTTF of 10,000 hours has a potential capacity

of 1000 times that of one PE, but the MTTF is only 10 hours.

For a parallel computer which has been developed to obtain

high performance, the goal can be achieved by increasing

the number of PEs in this way, but its fault tolerance has

been reduced. For a parallel computer whose scale is small

or for parallel software whose execution time is small, this

has been sufficient. However, as commercial massively

parallel computers appear, parallel software requiring pro-

longed continuous execution has also appeared recently and

fault tolerance is also being demanded in parallel comput-

ers.

In fault-tolerant computers, including Tandem, fault

tolerance is realized by utilizing the parallelism of special

hardware. However, fault-tolerant implementation by spe-

cial hardware and a special OS is expensive; to develop an

inexpensive method, there was an investigation of the reali-

zation of fault tolerance by software for existing parallel

computers [1]. Moreover, in special systems, support for

fault tolerance-based programming has been developed by

forcing a new software development approach oriented

toward that system on the users. However, as usual, the

programmer must define the processing for the fault, which

constitutes a large burden. In parallel software, which is

much more complicated in structure, such burdens will

become much larger.

As a fault-tolerant implementation hypothesizing a

general commercial massively parallel computer, we have

proposed a method for constructing fault-tolerant parallel
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software (FTPS) [4, 5] by automatic conversion of parallel

logic programs [2, 3]. This can be regarded as a hybrid of

the primary/backup approach and the state machine ap-

proach [1, 8]. We have so far performed the measurements

and analyses by packaging a small-scale experimental pro-

gram on an nCUBE2 [6, 7].

Research on the fault-tolerant implementation of par-

allel programs has included a study by Cherif and col-

leagues on fault-tolerant software with functional

programming as a target [10]. In the model they used, the

execution unit, called a module, is a function having no side

effects. The module is decomposed into submodules and

developed into a tree structure. Our research differs in that

a program based on a process model is the target. The

parallel logic programming we used can also be treated as

the development of the predicate into a tree structure.

However, its execution sequence is nondeterministic and is

guaranteed by a synchronous function in which queuing

based on dependence relations is provided by the language

processing system. Moreover, in their scheme, the execu-

tion results of the submodules are stored in nonvolatile

memory as soon as the majority decision is taken among

replicas. Thus, when a separate replica tries to execute the

same submodule later on, it suffices to utilize the stored

results and parallel effects among replicas can be expected.

Kishimoto and colleagues have studied a UNIX-

based fault-tolerant implementation without hypothesizing

a special machine [9]. Their approach is also a fault-tolerant

implementation based on process replicas; however, since

they cannot guarantee identity of the processes among

copies and are concerned about the timing dependence

bugs, they have adopted a scheme in which the state is

preserved in nonvolatile memory. In contrast, in our re-

search, in addition to the fact that we have proposed a

scheme which will guarantee meaningful identity, timing

dependence bugs are prevented by distinctive features of

the parallel logic programming language.

In general, FTPS based on replicas requires commu-

nications to maintain consistency among replicas, and the

execution time of the FTPS will decrease due to the extra

processing involved in these communications. The method

proposed by us will also greatly affect the communication

costs among replicas and its permissible amount can be

estimated from the communication performance of the

system.

In this paper, we will expand the analyses obtained

through our research and study the conditions for obtaining

sufficient execution performance by FTPS based on repli-

cas in general. The process replicas will reduce the perform-

ance as a parallel computer due to a decrease in the usable

number of PEs. Hence, superiority cannot be ascertained

by merely comparing execution times. In this paper, we

define the MWTF (Mean Workload To Failure) as an evalu-

ation criterion defined from reliability and performance;

based on this criterion, we will determine the conditions

under which fault-tolerant execution becomes superior.

This paper is composed as follows. In Section 2 we

will set the assumptions for the FTPS based on process

replicas. We will also provide assumptions for the proper-

ties of the parallel program under consideration for fault-

tolerant implementation. Next we will describe the

evaluation index MWTF of the FTPS in Section 3. This

becomes the evaluation criterion of the system for reliabil-

ity and performance. Then, in Section 4, we will determine

the conditions required in the parallel programs. In Section

5, based on these conditions, we will determine the condi-

tions for maintaining the MWTF of the FTPS according to

the evaluation criterion of Section 3.

2. FTPS Based on Process Replicas

2.1. Fault model

The parallel program under consideration is com-

posed of a set of processes which exchange messages. Each

process is mapped on the real PE and performs paralleling

and parallel operation. The process is either in a normal

state or in a crash state. The crash state is a state in which

no transmission and reception of messages is performed as

observed from outside owing to a fault of the PE which is

its operation environment or of the communication channel

between PEs.

2.2. Communication model

Communication between processes follows an asyn-

chronous model. Between processes mapped on different

PEs, processing in a PE will be interrupted for communi-

cation processing between PEs. For simplicity, the trans-

mission and reception processing times in each

communication are considered the same; the communica-

tion overhead is estimated by treating the number of trans-

missions and receptions as the amount of communication.

In general, there is a difference due to the respective mes-

sage lengths and there is also a difference in the processing

costs of transmission and reception; however, we take this

approach based on experimental experience on nCUBE2.

In nCUBE2, the number of communications is predomi-

nant over the message length in the communication time

[7]; moreover, in a high-level language such as the one we

have used in packaging, the ratio of the message encoding

and decoding times in the processing system in the commu-

nication time is large. Furthermore, if the cost in the inter-

change of context for transmission and reception is

considered, this may be considered a realistic assumption.

Besides, since the communication between processors on
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the same PE takes place via the memory, the processing

time is so much smaller that it can be neglected compared

to that between PEs.

In the following, we assume that the amount of com-

munication of the program is determined by the amount of

work allocated to the program. This is because the amounts

of transmission and reception required in the execution of

the program depend on the amount of data to be processed

by it, based on the assumption that the amount of data to be

processed and the amount of work are proportional. In a

parallel program, the amount of communication will in

general change depending on the method of division of

work. In the next section, we will implement the assump-

tions for the amount of communication of the parallel

program.

2.3. Execution model of parallel program

When the program is to be executed in parallel, if the

number of PEs constituting the system is N, the amount of

work at maximum load in the PE becomes, by Amdahl�s

law, �p /N � �1 � p��w �0 d p d 1�, where p is the paral-

lelizable fraction of the amount of work w. However, the

communication processing between PEs is not considered

in this value.

If the work w required for communication in the total

amount of work is homogeneous and distributed equally

over all PEs of the N-unit configuration, the following three

cases may be considered for the relation between the distri-

bution and the amount of communication of each PE.

(1) The amount of communication of the PE increases

due to division.

(2) The amount of communication of the PE de-

creases due to division.

(3) The amount of communication of the PE does not

change because of division.

As an example of (1), the case may be considered in

which the communication of all links is required by the

subtasks themselves. In this case, the amount of work in

each PE is �p /N � �1 � p��w for one PE and is pw/N for the

other N � 1 PEs. Since it is required that the communication

is homogeneous in this work, the amount of communication

of each PE depends on whether the amount of work itself

or the remaining total amount of work distributed to the

other PEs is larger. Namely, in a PE with an amount of work

�p /N � �1 � p��w, it depends on the total amount of work

�p � 1�pw /N external to that PE and the quantity

max��p /N � �1 � p��w, �N � 1�pw /N�; in a PE with an

amount of work pw/N, it depends on the total amount of

work �p /N � �1 � p��w � �N � 2�pw /N   �N � p�w /N ex-

ternal to that PE and the quantity max�pw /N, �N � p�w/N�.

Therefore, the total amount of communication flowing in

the entire system is proportional to wc   max��p/N �

�1 � p��w, �N � 1�pw/ N� � �N � 1�  u max�pw/N,
�N � p�w/N�. If N is sufficiently large and the degree of

parallelization is also sufficiently high �p | 1�, we have

wc | Nw and the total amount of communication will in-

crease in accordance with the system scale N. In this case

(1), since the amount of communication will increase as the

assigned work w is further distributed, this is a program type

not basically oriented toward parallel execution except in

the case where the communication processing capability is

very high or the system scale is small. In other words, since

the coupling force among tasks is strong, it is easier to

obtain performance in this type of program by executing it

with one PE.

As an example of (2), the case may be considered in

which the subtasks communicate only with the neighboring

tasks. The amount of communication of each PE is also

proportional to pw/N. In this case, the amount of commu-

nication in the entire system remains unchanged.

In case (3), no communication exists between sub-

tasks or else (1) and (2) are mixed and cancel each other. In

the case of mutual cancellation, the portion representing

case (1) is merely executed sequentially and the processing

efficiency will rise, resulting in case (2). Moreover, as an

example of the amount of communication being un-

changed, there is an OR parallel program with limitation

which requires almost no communication between sub-

tasks. This type is typical in parallel programming and is

highly parallel-processing oriented. As in the split-govern-

ing method, since there is no interconnection between

subprograms, no communication is required during parallel

operation; however, communication is required in the gath-

ering of the final results. Since this amount of communica-

tion depends on the amount of divided subprocessing, it will

still result in case (2).

Here, type (2) is hypothesized as a parallel program

type. This is because this type of program is most likely a

parallel program and may be considered as a parallel proc-

essing-oriented type. Therefore, the amount of communi-

cation c contained homogeneously in the work will be

expressed in terms of the communication content J as

c   pwJ /N. We may also assume that communication proc-

essing occurs only in the parallel execution portion

�pw /N� and that the sequential execution portion

��1 � p�w� performs the communication inside PEs with

coexisting parallel portions.

2.4. FTPS execution model

As an FTPS based on process replication, we will

define the execution model for the FTPS technique that we

have proposed. This technique is a hybrid of a typical state
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machine and the primary/backup approach, and these tech-

niques are also applicable in the analysis presented later.

A faulty PE will not be utilized again in the following.

This is because it is difficult from the software viewpoint

to restart the faulty PE and to perform reloading of the

processing system and OS.

The replication processes are implemented in groups,

and mapped into separate PEs in such a way that the groups

will not overlap. Although selection in which the groups are

mixed together and mapped into the PEs is also possible, it

will not be considered here. This is because a process which

is affected by one PE fault will spread to multiple groups

and no improvement of reliability will be possible. More-

over, it is assumed that the number of PEs in each group has

no imbalance. Therefore, for the total number of PEs N, if

the number of replicas is k + 1 , each group will operate in

parallel on n   N /�k � 1� PEs. Here, k expresses the number

of faults which can be tolerated (the resiliency) and this

system is called a k-resilient system. It is easily understood

that performance as a parallel system will drop if k is

increased in order to increase reliability, or if the number of

PEs n which can be utilized for parallel execution of the

program is decreased.

If the program is FTPS-implemented, it is unavoid-

able that the amount of processing for fault tolerance with

respect to the original program will increase. With respect

to the amount of work w of the original program, the amount

of work of the FTPS is expressed as wc   �1 � D�w, using

the rate of increase D(> 0) of the amount of work for the

FTPS. Therefore, the amount of work of the FTPS exclud-

ing the communication per PE is a maximum of

�p /n � �1 � p��wc. The performance of the FTPS is also

influenced by the amount of communication for the FTPS.

2.4.1. State machine

Each process of the program is replicated and run on

a separate PE. The inputs from other processes are sent to

all replicas and the outputs are transmitted from all replicas.

Although communication between replicas is not required,

the execution of the process must be deterministic. When

any replica crashes, it is merely abandoned and other repli-

cas continue to execute.

In the case of a state machine, there is no communi-

cation between replicas, that is, communication for FTPS.

The increase of the amount of work for FTPS is about equal

to the increase in operation required for generating the

replicas and for input/output operations to the replicas. If

the actual amount of work at the replicas is sufficiently large

and the input/output is sufficiently small, the increase of the

amount of work can be neglected. Therefore, this consti-

tutes the most efficient approach for the FTPS. However, in

general, nondeterminism is allowed in the parallel program;

and in this technique where the determinism is assumed,

all-sequence multicasting is required in order to keep the

state of the nondeterministic process set identical between

replicas, which is very difficult.

2.4.2. Primary/backup

Let one group of replicas be primary and the others

be backups. The inputs from other processes are sent to the

primary only and the outputs are also sent from the primary

only. The primary transfers the change of the internal state

to the backups and each backup changes its internal state

accordingly. After the change, the backup sends an accep-

tance signal back to the primary. Waiting for the confirma-

tion of the acceptance from all backups which are in normal

operation, the primary moves to the next operation. When

the backup crashes, it is merely abandoned; however, when

the primary crashes, a new primary is selected from among

the backups, or resending of the input to the primary from

outside the system may be necessary.

In packaging, all-sequence multicasting as in the state

machine is not required; however, atomism is required in

the multicasting from primary to backup. When atomism

cannot be guaranteed, consistency of the internal state

between backups cannot be guaranteed.

In this technique, to avoid overlap or extinction of the

outputs to the outside, an internal state in which consistency

is assured must be obtained by coordination between proc-

esses (coordinated checkpointing). Otherwise, it may be

necessary to roll back to the state in which consistency

including the outside has been achieved during recovery

from a fault. These amounts of processing are hard to

estimate; however, the entire performance may be greatly

affected by the amount of communication between primary

and backup. Since these amounts of communication cc

depend on the amounts of work in the PEs and the interval

in which the internal state is taken during the execution of

the work, they can be expressed by using an appropriate

coefficient E, as follows:

2.4.3. Hybrid approach

Also similar to the primary/backup approach, one

group of replicas is primary and the other consists of

backups in this technique. However, similar to the state

machine, the inputs from the other processes are sent to all

replicas and the outputs are also sent from all replicas. Each

replicated group can be made to correspond to the PEs of

arbitrary units and parallel operation inside the group is

made possible. The user process to be executed with fault

tolerance is first replicated and sent to the respective groups.

Moreover, this process can form a process network by

forking the subprocesses in the PEs constituting the group.

(1)
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If the subprocess operates deterministically, it will operate

without communication between replicas, as an active rep-

lica in the state machine approach. On the other hand, if the

subprocess operates nondeterministically, the process in the

primary will operate as a primary replica and will be sent

to the backup replica corresponding to the information of

the nondeterministic operation result. Based on this infor-

mation, the backup replica will reproduce the same opera-

tion as the primary replica.

The nondeterministic operation mentioned here

means free operation allowed in the process; its behavior

cannot be controlled from outside and can only be observed

from the execution result. In general, such nondeterminism

is allowed in parallel languages for the purpose of reviving

the parallelism of the program. In OCCAM, for example,

operation with nondeterministic input from multiple chan-

nels can be described by the ALT structure. In the parallel

logic language, since the extraction of the nondeterministic

operating portion of the program source is possible me-

chanically, automatic conversion is possible.

Furthermore, in this scheme, the state between repli-

cas is maintained for every process, not for every PE. If the

state is to be maintained for every PE, the execution sched-

uling inside the PE must be maintained the same and

synchronization between PEs becomes necessary for every

scheduling. Execution is therefore reproduced in the pro-

posed scheme by maintaining the same state meaningfully.

Therefore, when the primary is faulty, there is no guarantee

that the backup is strictly in the same state; however, if it is

normal, it can be guaranteed that the same state will always

be reached meaningfully. For this reason, the backup will

not roll back. Besides, for the commitment of output to the

outside, lenient synchronization will be performed in non-

deterministic execution and output operations.

Compared to the primary/backup approach, since the

realizability of this approach as a parallel program is high,

and since it is not necessary to consider coordinated check-

pointing and rollbacks, the performance estimation is also

relatively easy and is determined by the amount of commu-

nication cc described in primary/backup. However, E is

determined by the nondeterminism existing inside the pro-

gram.

3. MWTF, The Evaluation Index

The reliability of a nonrestructuring system can be

evaluated in terms of the MTTF; however, in order to

prolong the MTTF of the parallel system, it is simpler to

reduce the number of PEs. The purpose of this research is

to increase the number of PEs which can be utilized along

with the MTTF, and the MTTF thus is not appropriate as an

evaluation index. Accordingly, as an evaluation index for

comparison here, we will introduce the mean executable

workload or MWTF (Mean Workload To Failure). The

MWTF is defined by the processing capability per unit time

of the system, times the MTTF, and expresses the work

capacity the system is expected to complete before a fault.

Fault-tolerant implementation of the parallel pro-

gram will increase the MWTF; however, in general, proc-

essing overhead will be added and the amount of processing

will also increase more than in the original program. If this

increase in the amount of processing is considered, the

processing capability per unit time of a system which is

implemented as fault-tolerant may be regarded as de-

creased. This processing capability per unit time can be

obtained from the actual execution time of the program.

Namely, if the amount of work of the original program, the

processing capability per unit time of the system, and the

execution time of the program are w, W, and T, respectively,

and if the processing capability per unit time of the system

and execution time of the fault-tolerant program are W c and

T c, respectively, then W c   �T/T c�W can be obtained from

the relations T   w/W and T c   w/W c.

In the parallel program, the overhead for paralleliza-

tion and communication processing will be added to the

amount of work, and the idle time and communication

waiting time due to the imbalance of parallel operation will

be added to the execution time. In the following, the imbal-

ance of parallel operation and the idle time will not be

considered because of the homogeneous distribution.

Therefore, the processing capability per unit time is calcu-

lated with reference to the total CPU power, the parallelism

of the program, the amount of communication processing,

and the communication processing performance per unit

time. If the processing capability per unit time is simply

considered as the total CPU power, it can be regarded, in

the parallel system, as N, based on N PEs; however, as

described before, since other factors will be added, this can

be regarded as the maximum processing capability. The

MWTF calculated from this can be regarded as the maxi-

mum MWTF.

3.1. Parallel system

The reliability of a general parallel system is calcu-

lated for a series system because execution will fail even if

one of the component elements is at fault. Namely, for the

reliability r�t� of the PE, we have R�N, t�   r�t� in general.

It is assumed that the failure rate of the PE is constant and

that the reliability follows the exponential distribution.

Namely, if r�t�   e�t, the MTTF of the PE is

and the MTTF of a parallel system of N-unit configuration

becomes

(2)
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Namely, since the MTTF will be 1/N as great as that of a

single PE if the parallel system is an N-unit configuration,

the maximum MWTF is equal to the MWTF of a single PE.

Namely, the MWTF of the parallel system can be reduced

by the MWTFs of the component PEs.

3.2. FTPS execution system

A fault-tolerant implementation based on process

replication will increase the MTTF of the system at the cost

of a decrease in the utilizable number of PEs of the parallel

system. The FTPS execution model dealt with in this paper

can be regarded as a nonrestructuring system with the

respective replicated groups as the component elements. In

the k-resilient system (the parallel system consisting of k +

1 replicated groups), it can be calculated as follows (here F

is the unreliability corresponding to the reliability R):

Therefore, the MTTF of the k-resilient system with a

total of N PEs is �k � 1�¦i 0
k  1 / �i � 1� times the MTTF of

the original parallel system. Moreover, in general, the

MTTF of the FTS is of the order of k log k, from the

following relation:

4. Conditions of Parallel Program

Since the purpose of the parallel program is high-

speed execution, it is meaningless unless it is faster than

sequential execution. In order to determine the conditions

for high-speed implementation of this parallel program, we

will study the execution time when the sequential program

is parallelized.

4.1. Execution time of sequential program

First, looking at the execution of an ordinary user

program on a single PE, since no communication cost

between PEs exists, the factors which determine the execu-

tion time are the amount of work of the program and the

processing performance per unit time of the PE.

If w is the total amount of work of the program and

W is the processing performance per unit time, the ordinary

program execution time T1 on a single PE becomes

T1   w /W.

4.2. Execution time of parallel program

Let us consider the case where the same program as

above is executed in parallel. Here, let W be the processing

performance per unit time inside the PE and let c be the

communication processing performance per unit time.

Then, from Section 2.3, let the amount of communication

be proportional to pw /N. Therefore, if the loads are bal-

anced and the communication delay is neglected, the com-

munication time can be expressed, by an appropriate

parameter J, as pwJ / �NC�. Hence, the execution time TN in

parallel execution is as follows �N ! 1�:

Here, GN expresses the performance degradation during

parallel execution.

Let us examine this value for the cases of p o 0 and

p o 1. When p o 0, that is, the sequentiality of the pro-

gram becomes higher, the amount of communication de-

creases and TN o T1. This reflects the fact that sequential

portion will not split unreasonably. When p o 1, that is, the

parallelism of the program becomes higher, it is seen from

TN o 1
N
�1 � JW

C
�T1 that a communication overhead accord-

ing to the amount of communication (determined by J) will

be added, not merely 1/N for sequential execution.

4.3. Conditions for high-speed

implementation of parallel program

From the above, in order to make parallel execution

faster than sequential execution, it is necessary and suffi-

cient that 1
N
 d TN /T1 d 1, that is, 1 d GN d N; from this, the

condition 0 d J d N � 1
W / C

 is obtained. Hence, the communica-

tion content J allowed in the parallel program is limited by

the scale N of the parallel system as well as the processing

performance per unit time W and the communication proc-

essing performance per unit time C. It can be seen clearly

that the allowable communication becomes smaller as the

(3)

(4)

(5)

(6)

(7)

(8)
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communication processing performance per unit time be-

comes increasingly inferior to the processing performance

per unit time �C � W�.

From the above condition, letting J   N � 1
W / C

 Jc, the fol-

lowing can be obtained:

5. Conditions of FTPS

From the viewpoints of reliability and speed, FTPS

does not make sense unless there is a greater performance

improvement than in the original parallel program. Accord-

ingly, let us determine the conditions for the MWTF im-

provement of FTPS.

5.1. Execution time of FTPS

Similar to Section 4.2, by virtue of Section 2.4, the

fault-tolerant processing time T N
g  of the k-resilient FTPS is

as follows:

GN
g  is the performance degradation factor during fault-tol-

erant execution. When the deterministic program is com-

pletely operated in the state machine, since no

communication between replicas exists, cc   0, that is, let

the coefficient of communication between primary and

backup be zero, E = 0. Moreover, since the execution on the

replicas is completely the same as the original program,

GN
g  is calculated by letting the amounts of work of the

programs be wc | w, namely, letting the rate of increase of

the amount of work of the FTPS be D = 0. Since a technique

for realizing a program containing nondeterminism of the

state machine is difficult to realize, this case corresponds to

the ideal best case for a state machine only.

In the primary/backup approach, the amount of com-

munication between replicas affects mostly the execution

time. This amount is determined by E; however, efficient

implementation can be achieved by choosing the check-

point interval. Namely, if the number of checkpoints in the

entire execution is s, it can be considered as a value of

E   Ec / s. However, because of coordinated checkpoints,

Ec will probably become larger to some extent.

The hybrid approach is the same as the pri-

mary/backup approach; however, the value of Ec is smaller

compared to the primary/backup approach; since s is deter-

mined by the nondeterminism of the program, it will be

fixed by the program.

5.2. Calculation of MWTF

(1) Program on a single PE

In the ordinary execution of the program on a single

PE, since there is no consideration of communication proc-

essing, the CPU processing performance W of the PE is

regarded as the unaltered processing capability per unit

time and can be obtained as follows:

(2) Parallel program

During parallel execution, since a time TN is used for

processing an amount of work w, the processing perform-

ance per unit time WN can be obtained as WN   w /TN.

Hence, the MWTFN is calculated as 

(3) FTPS

Similarly, the MWTF N
g  of the FTPS can also be

calculated:

5.3. Condition for MWTF improvement of

FTPS

In order to obtain MWTF improvement, it suffices

that  the MWTF improvement factor satisfy

I   MWTF N
g /MWTFN t 1, or, equivalently, the following:

Figure 1 shows how the MWTF of the FTPS changes

as the communication processing speed of the element

processor becomes slower compared to ordinary processing

for a 1-resilient FTPS with 100 element processors (N =

100).* W/C of the x-axis is the ratio of the processing

performance per unit time (W) to the communication proc-

essing performance per unit time (C), and it approaches the

origin as the communication processing becomes relatively

(9)

(10)

(11)

(12)

(13)

(14)

(15)

*
Owing to the graphical presentation, we let ¦i 0

k
 

1
i � 1

 | 
1
2
 �log�k � 2�

� 1 � log�k � 1��
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faster. Moreover, Fig. 2 shows, for part of Fig. 1, the change

of the MWTF for a k-resilient FTPS for W/C = 20 and k =

1 to 5. Figure 1 is a semilogarithmic plot with the x-axis as

the logarithmic axis and Fig. 2 is a bilogarithmic plot.

In Fig. 1, the straight lines of Cases 1 to 4 are plotted

with the values of D = 0 and E = 0; we also show the

performance of the programs of the respective types ob-

tained by the state machine approach (in the completely

deterministic case). In the program of Case 1, the degree of

parallelization (p = 0.01) and the amount of communication

(Jc = 0.01) are also small and are close to the limit of the

performance improvement obtained by the state machine

approach. This value is obtained from the improvement

factor of the MTTF and is the upper limit of the perform-

ance improvement of the FTPS based on replication. With

respect to Case 1, the situation in which the amount of

communication is increased (Jc = 0.99) is represented by

the straight line of Case 2. It is seen from this result that an

increase of the amount of communication of the original

program will not affect the MWTF improvement at all.

Case 3 is the case where only the degree of parallelization

is raised (p = 0.99) and Case 4 is the case where the amount

of communication and degree of parallelization are both

higher. The straight line of Case 1-1 shows the case where

the processing overhead of the FTPS is raised (D = 0.2) with

respect to Case 1.

Since the curves of Cases X-2 and X-3 contain commu-

nication processing for the FTPS, they show the performance

of the FTPS based on the primary/backup and hybrid ap-

proaches. In Case X-2, the amount of communication for

the FTPS is relatively small and corresponds to about 1%

(E = 0.01) of the processing in a PE; in Case X-3, it corresponds

to a situation which requires an amount of communication

about 1.5 times as great (E = 1.5). Each of them drops abruptly,

along with a relative drop of communication performance

(increase of W/C), with Case X of the state machine as an upper

limit.

Moreover, similarly to Cases 1 and 2, it is seen from

Cases 1-X and 2-X that the increase of the amount of commu-

nication of the original program will not affect the MWTF

improvement at all. Case 3-X, whose degree of parallelization

is high, will lower the peak of the MWTF improvement

compared to Cases 1-X and 2-X. However, even if the degree

of parallelization is the same, the peak will drop but the value

of W/C shifts to the right compared to Case 2-X in a program

whose amount of communication is originally greater, as in

Case 4-X. Namely, in the parallel program in which the degree

of parallelization is high and the amount of communication is

also greater, a large MWTF improvement by FTPS implemen-

tation cannot be expected; however, it is seen that it can tolerate

utilization even if the communication performance of the

system is relatively low.

It can be confirmed again from Fig. 2 that for a

program whose degree of parallelization is low and whose

amount of communication is small, as in Case 1-X, the

MWTF will improve by a factor of the order of

Fig. 1. MWTF improvement of FTPS (k = 1).

Fig. 2. MWTF improvement of FTPS (W/C = 20).
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�k � 1�log�k � 1�. On the other hand, it is seen that in a

program whose degree of parallelization is higher (Case

3-X) or whose amount of communication is larger (Case

2-X), it will improve by a factor of the order of log( k + 1).

This agrees with the fact that if p o 1 and Jc o 1, I will be

governed by ¦k1 / �i � 1�.

It is seen from the analysis that the upper limit of the

MWTF improvement is reduced by an MTTF improvement

of �k � 1��1 � log�k � 1��, and that the limit becomes lower

with a higher degree of parallelization of the program or a

larger amount of communication. Thus, in a program whose

parallelism is higher, since the parallelism of the system can

be more effectively utilized, the gains realized from FTPS

are small. On the contrary, when the parallelism which the

program requires is smaller than the system scale, some

freedom in utilizing the extra system resources owing to the

FTPS for fault tolerance can be given to the user.

In the FTPS based on replication, an improvement of

the MWTF can be obtained when the relative communica-

tion speed is faster. The fact that the relative communication

speed is faster means that the fraction of processing on the

processor that is blocked for communication is small. This

trend becomes larger when the communication between

replicas increases further, as in the primary/backup or hy-

brid approaches. In primary/backup, there are uncertain

elements in the estimation, such as coordinated checkpoint-

ing or rollback processing, and the performance compari-

son generally cannot be made; however, the hybrid may be

considered superior in terms of ease of realization. More-

over, in the above results, the state machine has been shown

to have the best characteristics; however, attention must be

paid to the fact that the present analysis is limited to the case

of a completely deterministic program for the state machine

only. In the general case containing nondeterminism, the

realization in the state machine is difficult and the hybrid

approach may be a realistic selection.

Moreover, in a system whose communication per-

formance is low, the MWTF can be improved by increasing

the number of replicas (value of k), but this lowers the

potential performance of the system. The most effective

solution may be to raise the relative communication per-

formance of the system by increasing the execution units.

This is equivalent to decreasing the actual number of com-

munications by packing multiple communications between

processors.

6. Conclusions

Based on the MWTF defined, we have analyzed in

this paper the characteristics of the MWTF improvement

when fault-tolerant software based on a process pair is

realized in a parallel computer. In the analysis, it is assumed

that ordinary communication between PEs of the user pro-

gram and communication between PEs for fault tolerance

have the same cost; however, it can be seen that the amount

of communication required for fault tolerance will greatly

affect the MWTF improvement. Moreover, when commu-

nication processing between PEs is slower than ordinary

processing inside PE, the amount of communication for the

support of fault tolerance will be severely limited. With

respect to the increase of resiliency, the MWTF improve-

ment is only of the order of log; however, the range of the

applicable system performance balance will widen.

In the analysis, since the relative communication

performance will become faster when the execution units

of the program are large, it is seen that it is oriented to

coarse-grained parallel programs. But since the parallel

logic processing treated by us is fine-grained parallel proc-

essing oriented, performance improvement by fault-toler-

ant implementation is hard to achieve. The performance

may be raised by arranging several executions as one trans-

action to increase the number of execution units; however,

this realization is a subject of future study.

In this paper, we have analyzed the characteristics of

the FTPS in terms of the processing speed of the parallel

computer and the MWTF defined from the MTTF. Since

the advantages of the parallel computer are not only speed

but also abundant computing resources, we also plan to

include the computing resources in the analysis.
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